Inverse Kinematics
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Inverse Kinematics

» given the pose of the end effector, find the joint variables that
produce the end effector pose

» for a 6-joint robot, given
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RPP + Spherical Wrist
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Figure 3.9: Cylindrical robot with spherical wrist.

3 112112018



RPP + Spherical Wrist

» solving for the joint variables directly is hard
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Kinematic Decoupling

» for 6-joint robots where the last 3 joints intersecting at a
point (e.g., last 3 joints are spherical wrist) there is a simpler
way to solve the inverse kinematics problem

use the intersection point (wrist center) to solve for the first 3
joint variables

inverse position kinematics

use the end-effector pose to solve for the last 3 joint variables

inverse orientation kinematics
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RPP Cylindrical Manipulator
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RPP Cylindrical Manipulator

Ye
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RPP Cylindrical Manipulator

Ye
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RPP Cylindrical Manipulator

Ye
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RPP Cylindrical Manipulator

Ye
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RRP Spherical Manipulator

Given OC - ﬁnd 01 ) 02 ) d3

X

Figure 3.21: Spherical manipulator.
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RRP Spherical Manipulator

Figure 3.21: Spherical manipulator.
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RRP Spherical Manipulator

Figure 3.21: Spherical manipulator.
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RRP Spherical Manipulator

Figure 3.21: Spherical manipulator.
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RRP Spherical Manipulator

Figure 3.21: Spherical manipulator.
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Spherical Wrist
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Spherical Wrist
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Spherical Wrist
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Inverse Kinematics Recap

I Solve for the first 3 joint variables (, q,, 5 such that the
wrist center O, has coordinates

. 0
2. Using the results from Step |, compute R ;

3. Solve for the wrist joint variables q,, gz, q; corresponding to
the rotation matrix

R:=(RYJRS
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Spherical Wrist

» for the spherical wrist
C,CCo —S,Ss  —CyCeS;—S,Cs  C,S: C,S:d, |
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Spherical Wrist
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Spherical Wrist
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Spherical Wrist

» if ;=0
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Spherical Wrist

» continued from previous slide
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Using Inverse Kinematics in Path
Generation

25
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Path Generation

» a path is defined as a sequence of configurations a robot
makes to go from one place to another

» a trajectory is a path where the velocity and acceleration
along the path also matter
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Joint-Space Path

» a joint-space path is computed considering the joint variables
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Joint-Space Path Joint Angles

» linear joint-space path
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Joint-Space Path

» given the current end-effector pose

T
and the desired final end-effector pose
T
find a sequence of joint angles that generates the path

between the two poses

» idea

solve for the inverse kinematics for the current and final pose to get
the joint angles for the current and final pose

interpolate the joint angles

29 1/21/2018



Joint-Space Path

G
4,

OT = inverse kinematics = OQ:

fT = inverse kinematics = fQ:
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Joint-Space Path

find °Q from °T
find 'Q from T
At=1/m
AQ="Q-°Q
forj=1tom
t=jAt
Q=0Q+14Q
set joints to JQ

end
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Joint-Space Path

» linearly interpolating the joint variables produces
a linear joint-space path
a non-linear Cartesian path
» depending on the kinematic structure the Cartesian path can
be very complicated

some applications might benefit from a simple, or well defined,
Cartesian path
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Cartesian-Space Path

» a Cartesian-space path considers the position of end-effector
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Cartesian-Space Path Joint Variable 1

» non-linear joint-space path
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Cartesian-Space Path Joint Variable 2

» non-linear joint-space path
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[ssues with Cartesian-Space Paths
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Joint Velocity Issues

» consider the RR robot shown below
» assume that the second joint can rotate by +180 degrees
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Joint Velocity Issues

» what happens when it is commanded to follow the straight
line path shown in red!?

38 1/21/2018



Joint Velocity Issues
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Joint Velocity Issues
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Workspace

» the reachable workspace of a robot is the volume swept by the
end effector for all possible combinations of joint variables

i.e., it is the set of all points that the end effector can be moved to
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Workspace

» consider the RR robot shown below
» assume both joints can rotate by 360 degrees
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Workspace

» rotating the second joint through 360 degrees sweeps out the
set of points on the dashed circle
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Workspace

» rotating the first and second joints through 360 degrees
sweeps out the set of all points inside the outer dashed circle
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Workspace

» workspace consists of all of the points inside the gray circle
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Workspace

» workspace consists of all of the points inside the gray circle
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Workspace

» consider the RR robot shown below where the second link is
shorter than the first

» assume both joints can rotate by 360 degrees
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Workspace

» rotating the second joint through 360 degrees sweeps out the
set of points on the dashed circle
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Workspace

» workspace consists of all of the points inside the gray area

1/21/2018



Workspace

» consider the following straight line path shown in red
» start point, end point, and all points in between are reachable
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Workspace

» consider the following straight line path shown in red

» start point and end point are reachable, but some points in
between are not reachable
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Paths satistying end point constraints
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Joint-Space Path

» a joint-space path is computed considering the joint variables
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Joint-Space Path Joint Angles

» linear joint-space path
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Constraints

» in the previous example we had two constraints for joint |:
%9, = 60
To, =270

» the simplest path satisfying these constraints is the straight
line path

» if we add more constraints then a straight line path may not
be able to satisfy all of the constraints
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Velocity constraints

» a common constraint is that the robot starts from a stationary

position and stops at a stationary positions

in other words, the joint velocities are zero at the start and end of

the movement
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» more generally, we
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Acceleration constraints

» for smooth motion, we might require that the acceleration at

» more generally, we might require non-zero accelerations
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the start and end of the motion be zero
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Satisfying the constraints

» given some set of constraints on a joint variable g our goal is
to find g(t) that satisfies the constraints

» there are an infinite number of choices for q(t)

it is common to choose “simple” functions to represent q(t)
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Satisfying the constraints with polynomials

» suppose that we choose g(t) to be a polynomial

» if we have n constraints then we require a polynomial with n
coefficients that can be chosen to satisfy the constraints

in other words, we require a polynomial of degree (n — 1)
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Satisfying the constraints with polynomials

» suppose that we have joint value and joint velocity constraints

q(to) = qo
q(tr) = 4y
q(to) = vy
q(tr) = vy

» we require a polynomial of degree 3 to represent q(t)
q(t) = a + bt + ct? + dt3

» the derivative of g(t) is easy to compute
g(t) = b + 2ct + 3dt?
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Satisfying the constraints with polynomials
» equating q(t) and §(t) to each of the constraints yields:
q(ty) = qo = a + bty + cté + dt;
q(tr) = qr = a + bty + ctf + dt?

Q(to) = Vo = b + ZCtO + 3dt5
Q(tf) = Uf =b+ Zth + 3dt]§

which is a linear system of 4 equations with 4 unknowns

(a,b,c,d)
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Example

» consider the following constraints where the robot is
stationary at the start and end of the movement

q(ty) =6(0) =10
q(t;) = 0(3) = 80
q(ty) =6(0) =0
q(tr)=63)=0

62
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Example: Joint angle
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Example: Joint velocity
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Example: Joint acceleration
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Satisfying the constraints with polynomials

» suppose that we have joint value, joint velocity, and joint
acceleration constraints

q(to) = qo
q(tr) = 4y
q(to) = vy
q(tr) = vy
G(to) = ay
G(tr) = ar
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Satisfying the constraints with polynomials
» we require a polynomial of degree 5 to represent q(t)

q(t) = a + bt + ct? + dt3 + et* + ft°

» the derivatives of g(t) are easy to compute
g(t) = b + 2ct + 3dt?* + 4et> + 5ft*
G(t) = 2c + 6dt + 12et? + 20ft3
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Satisfying the constraints with polynomials

» equating q(t), g(t),and §(t) to each of the constraints yields:

q(ty) = qo = a + bty + cté + dt;

q(tr) = qr = a + bty + ctf + dt?

G(ty) = vy = b + 2cty + 3dté

q(tr) = vf = b+ 2ct; + 3dt?

G(ty) = ag = 2¢ + 6dty + 12ets + 201t
i(tr) = ar = 2c + 6dty + 12etf + 201t}

which is a linear system of 6 equations with 6 unknowns

(a,b,c,d,e, f)
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Example

» consider the following constraints where the robot is
stationary at the start and end of the movement, and the joint
accelerations are zero at the start and end of the movement

q(to) = 6(0) = 10
q(t;) = 0(3) = 80
q(to) =6(0) =0
q(tr)=63)=0
G(to) = 6(0) =0
§(t;)=03) =0
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Example: Joint angle
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Example: Joint velocity
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Example: Joint acceleration

6(0) = 0 )

joint acceleration in degrees/s2

-50

time (s)
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